Stability of Stochastic Differential Systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F15%3APU114438" target="_blank" >RIV/00216305:26220/15:PU114438 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Stability of Stochastic Differential Systems
Original language description
This paper surveys the elementary theory of stability of solution of stochastic differential equations (SDEs) and systems. It can be used in population models, epidemic and genetic models in medicine and biology, meteorology models, in physical science,for analysis in economy, financial mathematics, etc. The article starts with a review of the stochastic theory. Then, conditions are deduced for the asymptotic mean square stability of the zero solution of stochastic equation with one-dimensional Brownian motion and system with two-dimensional Brownian motion. It is used a Lyapunov function. The method of Lyapunov functions for the analysis of behavior of SDEs provides some very useful information in the study of stability properties for concrete stochastic dynamical systems, conditions of existence the stationary solutions of SDEs and related problems.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Matematika, informační technologie a aplikované vědy (MITAV 2015)
ISBN
978-80-7231-998-5
ISSN
—
e-ISSN
—
Number of pages
9
Pages from-to
1-9
Publisher name
Univerzita obrany
Place of publication
Brno
Event location
Univerzita Obrany, Brno
Event date
Jun 18, 2015
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—