All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Image-Based Pixel Clustering and Connected Component Labeling in Left Ventricle Segmentation of Cardiac MR Images

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F15%3APU115946" target="_blank" >RIV/00216305:26220/15:PU115946 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/7382454" target="_blank" >https://ieeexplore.ieee.org/document/7382454</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICUMT.2015.7382454" target="_blank" >10.1109/ICUMT.2015.7382454</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Image-Based Pixel Clustering and Connected Component Labeling in Left Ventricle Segmentation of Cardiac MR Images

  • Original language description

    This research demonstrates a completely automated subsecond fast technique for left ventricle (LV) segmentation from clinical cardiac MRI images for the crucial assessment of left ventricular dysfunction as a measure of cardiac diseases. In this work left ventricle segmentation is achieved using the combination of fuzzy c-means which is a pixel based classification method and connected component labeling. This strategic combination obviates user intervention and problem of seed point initialization as it automatically segments the LV accurately on all frames in the complete cardiac cycle in multi-frame MRI. The both methods complement each other such that it achieves sub-second fast computational speed of 0.7 seconds on average per frame. Thus this technique’s computational time for left ventricle segmentation is much faster than iteration based methods. The accuracy of the automatic segmentation technique was tested against manual segmentation on the basis of correlation coefficient. can be considered clinically significant.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

    <a href="/en/project/LO1401" target="_blank" >LO1401: Interdisciplinary Research of Wireless Technologies</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2015 7th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)

  • ISBN

    978-1-4673-9282-2

  • ISSN

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    339-342

  • Publisher name

    Neuveden

  • Place of publication

    Brno, Czech Republic

  • Event location

    Brno

  • Event date

    Oct 6, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000380551300060