From lattices to H_v -matrices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F16%3APU115548" target="_blank" >RIV/00216305:26220/16:PU115548 - isvavai.cz</a>
Result on the web
<a href="http://www.anstuocmath.ro/mathematics//Anale2016Vvol3/10_Krehlik_S.__Novak_M..pdf" target="_blank" >http://www.anstuocmath.ro/mathematics//Anale2016Vvol3/10_Krehlik_S.__Novak_M..pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/auom-2016-0055" target="_blank" >10.1515/auom-2016-0055</a>
Alternative languages
Result language
angličtina
Original language name
From lattices to H_v -matrices
Original language description
In this paper we study the concept of sets of elements, related to results of an associative binary operation. We discuss this issue in the context of matrices and lattices. First of all, we define hyperoperations similar to those used when constructing hyperstructures from quasi-ordered semigroups. This then enables us to show that if entries of matrices are elements of lattices, these considerations provide a natural link between matrices, some basic concepts of the hyperstructure theory including $H_v$--rings and $H_v$--matrices and also one recent construction of hyperstructures.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Analele Stiintifice Ale Universitatii Ovidius Constanta, Seria Matematica
ISSN
1224-1784
e-ISSN
1844-0835
Volume of the periodical
XXIV
Issue of the periodical within the volume
3
Country of publishing house
RO - ROMANIA
Number of pages
14
Pages from-to
209-222
UT code for WoS article
000392747700011
EID of the result in the Scopus database
2-s2.0-85009992371