All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Electricity Load Forecasting Using Autoregressive And Artificial Neural Network Model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F16%3APU119744" target="_blank" >RIV/00216305:26220/16:PU119744 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.feec.vutbr.cz/EEICT/2016/sbornik/EEICT-2016-sborn%C3%ADk-komplet.pdf" target="_blank" >http://www.feec.vutbr.cz/EEICT/2016/sbornik/EEICT-2016-sborn%C3%ADk-komplet.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Electricity Load Forecasting Using Autoregressive And Artificial Neural Network Model

  • Original language description

    Abstract-In this paper a short review of two forecasting models Autoregressive and Artificial neural network is presented. Both models were used to demonstrate its superior performance in load forecasting issues. In the third section the results of load forecasting experiment are given. For obtained forecasted results mean absolute percentage error for autoregressive model was 0.644 % and for artificial neural network model 2.31 %. In this paper error distribution for both models is also shown.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JE - Non-nuclear power engineering, energy consumption and utilization

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LO1210" target="_blank" >LO1210: Energy for Sustainable Development</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 22nd conference Student EEICT

  • ISBN

    978-80-214-5350-0

  • ISSN

  • e-ISSN

  • Number of pages

    777

  • Pages from-to

    472-476

  • Publisher name

    Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních

  • Place of publication

    Brno

  • Event location

    Brno

  • Event date

    Apr 28, 2016

  • Type of event by nationality

    CST - Celostátní akce

  • UT code for WoS article