Electricity Load Forecasting Using Autoregressive And Artificial Neural Network Model
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F16%3APU119744" target="_blank" >RIV/00216305:26220/16:PU119744 - isvavai.cz</a>
Result on the web
<a href="http://www.feec.vutbr.cz/EEICT/2016/sbornik/EEICT-2016-sborn%C3%ADk-komplet.pdf" target="_blank" >http://www.feec.vutbr.cz/EEICT/2016/sbornik/EEICT-2016-sborn%C3%ADk-komplet.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Electricity Load Forecasting Using Autoregressive And Artificial Neural Network Model
Original language description
Abstract-In this paper a short review of two forecasting models Autoregressive and Artificial neural network is presented. Both models were used to demonstrate its superior performance in load forecasting issues. In the third section the results of load forecasting experiment are given. For obtained forecasted results mean absolute percentage error for autoregressive model was 0.644 % and for artificial neural network model 2.31 %. In this paper error distribution for both models is also shown.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JE - Non-nuclear power engineering, energy consumption and utilization
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LO1210" target="_blank" >LO1210: Energy for Sustainable Development</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 22nd conference Student EEICT
ISBN
978-80-214-5350-0
ISSN
—
e-ISSN
—
Number of pages
777
Pages from-to
472-476
Publisher name
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních
Place of publication
Brno
Event location
Brno
Event date
Apr 28, 2016
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
—