Moderní přístup k numerickému modelování bezpečnosti lithium iontových akumulátorů při zkratu
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F16%3APU121477" target="_blank" >RIV/00216305:26220/16:PU121477 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
čeština
Original language name
Moderní přístup k numerickému modelování bezpečnosti lithium iontových akumulátorů při zkratu
Original language description
At present one is able by means of numerical modelling tackle a wide range of robust and associated problems from engineering practice defined by partial differential equations. As a mathematical tool used for this solution, the most widely used today, finite element method (FEM) and finite volume method (FVM). Creating a global model is very demanding and becomes several parts. Entering geometric areas and their division into finite number of elements/volumes and network nodes is called the geometric model and creating the computational mesh. Setting up of differential equations with definitions function properties at the interface is a physical model. Solving functional differential equations and conversion of differential equations discretized finite element/volumes mesh on the system of algebraic equations is called a mathematical model.
Czech name
Moderní přístup k numerickému modelování bezpečnosti lithium iontových akumulátorů při zkratu
Czech description
At present one is able by means of numerical modelling tackle a wide range of robust and associated problems from engineering practice defined by partial differential equations. As a mathematical tool used for this solution, the most widely used today, finite element method (FEM) and finite volume method (FVM). Creating a global model is very demanding and becomes several parts. Entering geometric areas and their division into finite number of elements/volumes and network nodes is called the geometric model and creating the computational mesh. Setting up of differential equations with definitions function properties at the interface is a physical model. Solving functional differential equations and conversion of differential equations discretized finite element/volumes mesh on the system of algebraic equations is called a mathematical model.
Classification
Type
D - Article in proceedings
CEP classification
CG - Electrochemistry
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LO1210" target="_blank" >LO1210: Energy for Sustainable Development</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Fotovoltaické Fórum a Energetická konference 2016
ISBN
978-80-906281-3-7
ISSN
—
e-ISSN
—
Number of pages
120
Pages from-to
50-56
Publisher name
Česká fotovoltaická asociace
Place of publication
Praha
Event location
Plzeň
Event date
Nov 29, 2016
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
—