Genetic Optimization of Big Data Sentiment Analysis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F17%3APU122812" target="_blank" >RIV/00216305:26220/17:PU122812 - isvavai.cz</a>
Result on the web
<a href="https://ieeexplore.ieee.org/document/8049932" target="_blank" >https://ieeexplore.ieee.org/document/8049932</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SPIN.2017.8049932" target="_blank" >10.1109/SPIN.2017.8049932</a>
Alternative languages
Result language
angličtina
Original language name
Genetic Optimization of Big Data Sentiment Analysis
Original language description
This paper deals with opinion mining from unstructured textual documents. The proposed method focuses on approach with minimum preliminary requirements about the knowledge of the analysed language and thus it can be deployed to any language. The proposed method builds on artificial intelligence, which consists of Support Vector Machines classifier, Big Data analysis and genetic algorithm optimization. To make the optimization feasible together with big data approach we have proposed GA operators, which significantly accelerate conversion to the accurate solutions. In this work we outperformed the traditional approaches (which use language dependent text preprocessing) for text valence classification with the highest achieved accuracy 90.09 %. The data set for validation was Czech texts.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2017 4th International Conference on Signal Processing and Integrated Networks (SPIN)
ISBN
978-1-5090-2796-5
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
141-144
Publisher name
Neuveden
Place of publication
neuveden
Event location
Dept. of ECE, ASET, Amity University, Noida Sec-
Event date
Feb 2, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000426076800029