Modeling of Spectrum Handoff in 3GPP LTE-A Indoor Deployment
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F17%3APU124034" target="_blank" >RIV/00216305:26220/17:PU124034 - isvavai.cz</a>
Result on the web
<a href="https://ieeexplore.ieee.org/document/8075969" target="_blank" >https://ieeexplore.ieee.org/document/8075969</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSP.2017.8075969" target="_blank" >10.1109/TSP.2017.8075969</a>
Alternative languages
Result language
angličtina
Original language name
Modeling of Spectrum Handoff in 3GPP LTE-A Indoor Deployment
Original language description
The lack of available radio spectrum and inefficiency in its usage necessitate a new communication paradigm requiring to exploit the existing spectrum opportunistically. One of the perspective spectrum sharing methods, which is currently under a heavy investigation by academia and industry as well across whole Europe, is called Licensed Shared Access (LSA). This novel technology allows for controlled sharing of spectrum between an original owner (primary user, incumbent) and a licensee (secondary user), such as the mobile network operators (MNOs), which coexist geographically. Despite certain benefits, there are still several issues to be solved before the LSA framework will be implemented in commercial infrastructure. One of them is the need to move secondary users (SUs) from the rented LSA band whenever the incumbent needs it. The potential solution for this problem is represented by spectrum handoff, which aims to help SUs to vacate the occupied licensed spectrum and find suitable network resources to resume the unfinished transmissions somewhere else. Inspired by this, we propose a decision making model considering several SUs attributes (RSSI, RSRP, RSRQ, SINR) in order to efficiently implement the handoff procedure and treat SUs to maximize total service time, spectrum utilization and SUs satisfaction. As an input for our simulation model, we have used the set of measurements performed in real 3GPP LTE-A indoor cellular system located at Brno University of Technology, Czech republic. Our achieved simulation results evaluate the spectrum utilization of three LTE cells and provide the total service time for each active SU, while different values of primary user’s activity ratio are considered for each cell.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20201 - Electrical and electronic engineering
Result continuities
Project
<a href="/en/project/LO1401" target="_blank" >LO1401: Interdisciplinary Research of Wireless Technologies</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
40th Anniversary of International Conference on Telecommunications and Signal Processing (TSP 2017)
ISBN
978-1-5090-3981-4
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
204-207
Publisher name
Neuveden
Place of publication
Barcelona, Španělsko
Event location
Barcelona
Event date
Jul 5, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000425229000043