All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Electrical Impedance Tomography Methods and Algorithms Processed with a GPU

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F17%3APU124120" target="_blank" >RIV/00216305:26220/17:PU124120 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/8262025" target="_blank" >https://ieeexplore.ieee.org/document/8262025</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/PIERS.2017.8262025" target="_blank" >10.1109/PIERS.2017.8262025</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Electrical Impedance Tomography Methods and Algorithms Processed with a GPU

  • Original language description

    The present paper discusses the process of parallelizing an algorithm for the reconstruction of an image acquired via electrical impedance tomography (EIT). The introductory section comprises a general description of EIT, the inverse problem, and regularization; in this context, the potential of the method for biomedicine, defectoscopy, and geophysical mapping is outlined. The following chapter then analyzes the objective function of the EIT inverse problem together with Tikhonov regularization. Besides setting up the objective function with a regularizing member, the authors also specify the differentiation equation for the iterative solution of the inverse problem via the Gauss-Newton method. Further, the time consumption of computing the Jacobian via a CPU compared to using a newly assembled program that exploits GPU-based parallel processing is investigated in detail. The program, utilizing the NVIDIA CUDA platform, employs parallelized computation of the individual columns of the Jacobi matrix, and this approach proved to be twenty times faster than the CPU-based sequential processing.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    PIERS Proceedings (Spring) 2017

  • ISBN

    978-1-5090-6269-0

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    1710-1714

  • Publisher name

    Neuveden

  • Place of publication

    neuveden

  • Event location

    Petrohrad

  • Event date

    May 22, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000427596701137