All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Two classes of positive solutions of a discrete equation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F17%3APU125899" target="_blank" >RIV/00216305:26220/17:PU125899 - isvavai.cz</a>

  • Result on the web

    <a href="http://mitav.unob.cz/data/MITAV%202017%20Proceedings.pdf" target="_blank" >http://mitav.unob.cz/data/MITAV%202017%20Proceedings.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Two classes of positive solutions of a discrete equation

  • Original language description

    In the paper we study a class of linear discrete delayed equations with perturbations. Boundaries of perturbations guaranteeing the existence of a positive solution or a bounded vanishing solution of perturbed linear discrete delayed equation are given. In proofs of main results the discrete variant of Wazewski's topological method and method of asymptotic decompositions are utilized.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    MITAV 2017 (Matematika, informační technologie a aplikované vědy), Post-conference proceedings of extended versions of selected papers

  • ISBN

    978-80-7582-026-6

  • ISSN

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    21-32

  • Publisher name

    Neuveden

  • Place of publication

    neuveden

  • Event location

    Brno

  • Event date

    Jun 15, 2017

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article

    000576896800002