All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Chemical Separation on Silver Nanorods Surface Monitored by TOF-SIMS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F17%3APU126029" target="_blank" >RIV/00216305:26220/17:PU126029 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.hindawi.com/journals/jchem/2017/1608056/" target="_blank" >https://www.hindawi.com/journals/jchem/2017/1608056/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1155/2017/1608056" target="_blank" >10.1155/2017/1608056</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Chemical Separation on Silver Nanorods Surface Monitored by TOF-SIMS

  • Original language description

    The article introduces a possible chemical separation of a mixture of two compounds on the metal nanorods surface. A silver nanorods surface has been prepared by controlled electrochemical deposition in anodic alumina oxide (AAO) template. Rhodamine 6G and 4-aminothiophenol have been directly applied to the sampling point on a silver nanorods surface in an aliquot mixture. The position of the resolved compounds was analysed by time-of-flight secondary ion mass spectrometry (TOF-SIMS) which measured the fragments and the molecular ions of the two compounds separated on the silver nanorods surface. Rhodamine 6G has been preconcentrated as 1.5 mm radial from the sampling point while 4-aminothiophenol formed a continuous self-assembled monolayer on the silver nanorods surface with a maximum molecular ion intensity at a distance of 0.5 mm from the sampling point. The separation of the single chemical components from the two-component mixture over the examined silver nanostructured films could clearly be shown. A fast separation on the mentioned nanotextured films was observed (within 50 s). This procedure can be easily integrated into the micro/nanofluidic systems or chips and different detection systems can be applied.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Result continuities

  • Project

    <a href="/en/project/ED2.1.00%2F03.0072" target="_blank" >ED2.1.00/03.0072: Centre of sensor, information and communication systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Chemistry

  • ISSN

    2090-9063

  • e-ISSN

    2090-9071

  • Volume of the periodical

    2017

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    6

  • Pages from-to

    1-6

  • UT code for WoS article

    000403340400001

  • EID of the result in the Scopus database