All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Clinical Accuracy QRS Detector with Automatic Parameter Adjustment in an Autonomous, Real-Time Physiologic Monitor

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F17%3APU126203" target="_blank" >RIV/00216305:26220/17:PU126203 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/8309112" target="_blank" >https://ieeexplore.ieee.org/document/8309112</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/GlobalSIP.2017.8309112" target="_blank" >10.1109/GlobalSIP.2017.8309112</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Clinical Accuracy QRS Detector with Automatic Parameter Adjustment in an Autonomous, Real-Time Physiologic Monitor

  • Original language description

    This paper presents a computationally and temporal data-compact QRS complex detection algorithm useful in embedded real-time electrocardiogram (ECG) waveform analysis. The aim of the compact algorithms is to provide high sensitivity and specificity, i.e. diagnostically useful QRS waveform detection, in a continuous ambulatory monitor setting. The proposed detector uses a multi-level approach: QRS highlighting by means of a Truncated Discrete Time Stockwell Transform (TDTST), peak discrimination, and a trained Neural Network to reduce the number of false positive QRS detections. An optimization method is presented that automatically adjust the detector’s parameters to minimize the computational cost. Results demonstrate that the compact TDTST algorithm exhibits high QRS detection accuracy, an error rate of 0.31%, and remains applicable to real-time embedded physiologic ambulatory monitors.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

    <a href="/en/project/GAP102%2F12%2F2034" target="_blank" >GAP102/12/2034: Analysis of Relationship between Electrical Activity and Blood Flow at the Heart Ventricles</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP)

  • ISBN

    978-1-5090-5990-4

  • ISSN

    2376-4066

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    1005-1009

  • Publisher name

    IEEE

  • Place of publication

    Montreal, QC, Kanada

  • Event location

    Montreal, Kanada

  • Event date

    Nov 14, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000450053100199