All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Solving a higher-order linear discrete systems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F17%3APU126215" target="_blank" >RIV/00216305:26220/17:PU126215 - isvavai.cz</a>

  • Result on the web

    <a href="http://mitav.unob.cz/data/MITAV2017" target="_blank" >http://mitav.unob.cz/data/MITAV2017</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Solving a higher-order linear discrete systems

  • Original language description

    In this paper there is considered a linear discrete homogenous system of the order (m + 2): Delta(2)x(k) + B(2)x(k - m) = f(k), k is an element of N-0, where B is a constant n x n regular matrix, m is an element of N-0 and x: {-m, m + 1, ...} -> R-n, f: Z(0)(infinity) -> R-n. Two linearly independent solutions will be found as special matrix functions called delayed discrete cosine and delayed discrete sine. Formulas for solutions are gotten utilizing these matrix functions. An example illustrating results is given as well.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Mathematics, InformationTechnologies and Applied Sciences 2017

  • ISBN

    978-80-7582-026-6

  • ISSN

  • e-ISSN

  • Number of pages

    15

  • Pages from-to

    77-91

  • Publisher name

    Univerzita obrany, Brno

  • Place of publication

    Brno

  • Event location

    Brno

  • Event date

    Jun 15, 2017

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article

    000576896800008