All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Pruned DFT-Spread FBMC: Low PAPR, Low Latency, High Spectral Efficiency

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F18%3APU130511" target="_blank" >RIV/00216305:26220/18:PU130511 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Pruned DFT-Spread FBMC: Low PAPR, Low Latency, High Spectral Efficiency

  • Original language description

    We propose a novel modulation scheme which combines the advantages of filter bank multi-carrier (FBMC)-offset quadrature amplitude modulation and single-carrier frequency-division multiple access (SC-FDMA). On the top of a conventional FBMC system, we develop a novel precoding method based on a pruned discrete Fourier transform (DFT) in combination with one-tap scaling. The proposed technique has the same peak-to-average power ratio as SC-FDMA but does not require a cyclic prefix and has much lower out-of-band emissions. Furthermore, our method restores complex orthogonality, and the ramp-up and ramp-down period of FBMC is dramatically decreased, allowing low latency transmissions. Compared to pure SC-FDMA, the computational complexity of our scheme is only two times higher. Simulations over doubly selective channels validate our claims, further supported by a downloadable MATLAB code. Note that pruned DFT-spread FBMC can equivalently be interpreted as a modified SC-FDMA transmission scheme. In particular, the requirements on the prototype filter are less strict than in conventional FBMC systems.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20202 - Communication engineering and systems

Result continuities

  • Project

    <a href="/en/project/GA17-18675S" target="_blank" >GA17-18675S: Future tranceiver techniques for the society in motion</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE TRANSACTIONS ON COMMUNICATIONS

  • ISSN

    0090-6778

  • e-ISSN

    1558-0857

  • Volume of the periodical

    66

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    4811-4825

  • UT code for WoS article

    000447853900033

  • EID of the result in the Scopus database