All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Message Passing Algorithms for Scalable Multitarget Tracking

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F18%3APU130638" target="_blank" >RIV/00216305:26220/18:PU130638 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/JPROC.2018.2789427" target="_blank" >http://dx.doi.org/10.1109/JPROC.2018.2789427</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/JPROC.2018.2789427" target="_blank" >10.1109/JPROC.2018.2789427</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Message Passing Algorithms for Scalable Multitarget Tracking

  • Original language description

    Situation-aware technologies enabled by multitarget tracking will lead to new services and applications in fields such as autonomous driving, indoor localization, robotic networks, and crowd counting. In this tutorial paper, we advocate a recently proposed paradigm for scalable multitarget tracking that is based on message passing or, more concretely, the loopy sum-product algorithm. This approach has advantages regarding estimation accuracy, computational complexity, and implementation flexibility. Most importantly, it provides a highly effective, efficient, and scalable solution to the probabilistic data association problem, a major challenge in multitarget tracking. This fact makes it attractive for emerging applications requiring real-time operation on resource-limited devices. In addition, the message passing approach is intuitively appealing and suited to nonlinear and non-Gaussian models.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GA17-19638S" target="_blank" >GA17-19638S: Sequential Bayesian Estimation of Arterial Wall Motion</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    PROCEEDINGS OF THE IEEE

  • ISSN

    0018-9219

  • e-ISSN

    1558-2256

  • Volume of the periodical

    106

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    39

  • Pages from-to

    221-259

  • UT code for WoS article

    000425055600002

  • EID of the result in the Scopus database

    2-s2.0-85042004490