Optimal stabilization for differential systems with delays - Malkin’s approach
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F19%3APU134207" target="_blank" >RIV/00216305:26220/19:PU134207 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14560/19:00113744
Result on the web
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0016003219302698?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0016003219302698?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jfranklin.2019.04.021" target="_blank" >10.1016/j.jfranklin.2019.04.021</a>
Alternative languages
Result language
angličtina
Original language name
Optimal stabilization for differential systems with delays - Malkin’s approach
Original language description
The paper considers a process controlled by a system of delayed differential equations. Under certain assumptions, a control function is determined such that the zero solution of the system is asymptotically stable and, for an arbitrary solution, the integral quality criterion with infinite upper limit exists and attains its minimum value in a given sense. To solve this problem, Malkin’s approach to ordinary differential systems is extended to delayed functional differential equations, and Lyapunov’s second method is applied. The results are illustrated by examples, and applied to some classes of delayed linear differential equations.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS
ISSN
0016-0032
e-ISSN
1879-2693
Volume of the periodical
356
Issue of the periodical within the volume
8
Country of publishing house
US - UNITED STATES
Number of pages
31
Pages from-to
4811-4841
UT code for WoS article
000470110600004
EID of the result in the Scopus database
2-s2.0-85065090365