Contributions of basic, preclinical and clinical research to the application of induced electrical currents in the indications of rehabilitation and physical medicine
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F19%3APU144150" target="_blank" >RIV/00216305:26220/19:PU144150 - isvavai.cz</a>
Result on the web
<a href="https://www.prolekare.cz/casopisy/rehabilitace-fyzikalni-lekarstvi/2019-4-25/prinosy-zakladniho-preklinickeho-a-klinickeho-vyzkumu-k-uplatneni-indukovanych-elektrickych-proudu-v-indikacich-rehabilitacni-a-fyzikalni-mediciny-122203" target="_blank" >https://www.prolekare.cz/casopisy/rehabilitace-fyzikalni-lekarstvi/2019-4-25/prinosy-zakladniho-preklinickeho-a-klinickeho-vyzkumu-k-uplatneni-indukovanych-elektrickych-proudu-v-indikacich-rehabilitacni-a-fyzikalni-mediciny-122203</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Contributions of basic, preclinical and clinical research to the application of induced electrical currents in the indications of rehabilitation and physical medicine
Original language description
The application of induced electric currents is increasingly used in contemporary rehabilitation and physical medicine. The induced electric currents are generated by a time-varying magnetic field and are apparently the only or at least a major biologi-cally active factor in the action of low-frequency electromagnetic fields. In addition to the “classical” pulse magnetotherapy, which provides the smallest densities of induced electric currents (usually thou-sandths to hundredths of A/m2), so-called distance or non-contact electrotherapy is increasingly popu-lar, but rather known under the names contactless electrotherapy, electrodeless therapy, inductively coupled electromagnetic field therapy, high-induction electromagnetic field therapy, etc., which typically operates at higher current densities of pulse-induced electrical currents in the order of tenths to A/m2. High-induction magnetic stimulation with perceptual and muscular motor effects, which provides current density of tens to hundreds of A/m2 in treated tissues, is also a significant development. In this work, we first investigated the effect of induced electric currents on sensory neurons responsible for the transmission of stimuli of various modalities, including those associated with nociception. In these cells, bradykinin modeled inflammation accompanied by increased calcium ion concentration in the intracellular space. We have demonstrated the influence of distance electrotherapy and high induction magnetic stimulation on the reduction of calcium concentration in the cell as well as on the slower onset and decrease of bradykinin-induced calcium wave. However, induced electrical current pulses produced by high induction magnetic stimulation increased spontaneous neuro-neuro-nal activity of primary afferent sensory cells without the presence of bradykinin inflammatory mediator. Further research was focused on the study of the behavior of endothelial cells, important in terms of angiogenesis, under the in
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
20601 - Medical engineering
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Rehabilitace a Fyzikalni Lekarstvi
ISSN
1211-2658
e-ISSN
—
Volume of the periodical
2019
Issue of the periodical within the volume
4
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
17
Pages from-to
174-190
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85090331555