All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Orthogonal Projections for Dimension Reduction and Applications in Augmented Target Loss Functions for Learning Problems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU133044" target="_blank" >RIV/00216305:26220/20:PU133044 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s10851-019-00902-2" target="_blank" >https://link.springer.com/article/10.1007/s10851-019-00902-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10851-019-00902-2" target="_blank" >10.1007/s10851-019-00902-2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Orthogonal Projections for Dimension Reduction and Applications in Augmented Target Loss Functions for Learning Problems

  • Original language description

    The use of orthogonal projections on high-dimensional input and target data in learning frameworks is studied. First, we investigate the relations between two standard objectives in dimension reduction, preservation of variance and of pairwise relative distances. Investigations of their asymptotic correlation as well as numerical experiments show that a projection does usually not satisfy both objectives at once. In a standard classification problem we determine projections on the input data that balance the objectives and compare subsequent results. Next, we extend our application of orthogonal projections to deep learning tasks and introduce a general framework of augmented target loss functions. These loss functions integrate additional information via transformations and projections of the target data. In two supervised learning problems, clinical image segmentation and music information classification, the application of our proposed augmented target loss functions increase the accuracy.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/LO1401" target="_blank" >LO1401: Interdisciplinary Research of Wireless Technologies</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Imaging and Vision

  • ISSN

    0924-9907

  • e-ISSN

    1573-7683

  • Volume of the periodical

    62

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    19

  • Pages from-to

    376-394

  • UT code for WoS article

    000492013800001

  • EID of the result in the Scopus database

    2-s2.0-85074602417