Probabilistic Noise2Void: Unsupervised Content-Aware Denoising
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU134052" target="_blank" >RIV/00216305:26220/20:PU134052 - isvavai.cz</a>
Result on the web
<a href="https://www.frontiersin.org/articles/10.3389/fcomp.2020.00005/full" target="_blank" >https://www.frontiersin.org/articles/10.3389/fcomp.2020.00005/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fcomp.2020.00005" target="_blank" >10.3389/fcomp.2020.00005</a>
Alternative languages
Result language
angličtina
Original language name
Probabilistic Noise2Void: Unsupervised Content-Aware Denoising
Original language description
Today, Convolutional Neural Networks (CNNs) are the leading method for image denoising. They are traditionally trained on pairs of images, which are often hard to obtain for practical applications. This motivates self-supervised training methods, such as Noise2Void (N2V) that operate on single noisy images. Self-supervised methods are, unfortunately, not competitive with models trained on image pairs. Here, we present Probabilistic Noise2Void (PN2V), a method to train CNNs to predict per-pixel intensity distributions. Combining these with a suitable description of the noise, we obtain a complete probabilistic model for the noisy observations and true signal in every pixel. We evaluate PN2V on publicly available microscopy datasets, under a broad range of noise regimes, and achieve competitive results with respect to supervised state-of-the-art methods.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Frontiers in Computer Science
ISSN
2624-9898
e-ISSN
—
Volume of the periodical
2
Issue of the periodical within the volume
5
Country of publishing house
CH - SWITZERLAND
Number of pages
9
Pages from-to
1-9
UT code for WoS article
—
EID of the result in the Scopus database
—