Graph convolutional neural networks for sentiment analysis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU136947" target="_blank" >RIV/00216305:26220/20:PU136947 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Graph convolutional neural networks for sentiment analysis
Original language description
Commonly used approaches based on deep learning for sentiment analysis task operating over data in Euclidean space. In contrast with them, this paper presents, a novel approach for sentiment analysis task based on a graph convolutional neural networks (GCNs) operating with data in Non-Euclidean space. Text data processed by the approach have to be converted to a graph structure. Our GCNs models have been trained on 25 000 data samples and evaluated 5 000 samples. The Yelp data set has been used. The experiment is focused on polarity sentiment analysis task. Nevertheless, a relatively small training data set has been used, our best model achieved 86.12% accuracy.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings I of the 26th Conference STUDENT EEICT 2020
ISBN
978-80-214-5867-3
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
340-344
Publisher name
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Place of publication
Brno
Event location
BRNO
Event date
Apr 23, 2020
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
—