All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Improving the Precision of Wireless Localization Algorithms: ML Techniques for Indoor Positioning

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU136956" target="_blank" >RIV/00216305:26220/20:PU136956 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/TSP49548.2020.9163551" target="_blank" >http://dx.doi.org/10.1109/TSP49548.2020.9163551</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TSP49548.2020.9163551" target="_blank" >10.1109/TSP49548.2020.9163551</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Improving the Precision of Wireless Localization Algorithms: ML Techniques for Indoor Positioning

  • Original language description

    Due to the tremendous increase in the number of wearable devices and proximity-based services, the need for improved indoor localization techniques becomes more significant. The evolution of the positioning from a hardware perspective is pacing its way along with various software-based approaches also powered by Machine Learning (ML). In this paper, we apply ML algorithms to the real-life collected signal parameters in an indoor localization system based on Ultra-Wideband (UWB) technology to make an analysis of the signal and classify it accordingly. The contribution aims to answer the question of whether an indoor positioning system could benefit from utilizing ML for signal parameter analysis in order to increase its location accuracy, reliability, and robustness across various environments. To this end, we compare different applications of ML approaches and detail the trade-off between computational speed and accuracy.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20203 - Telecommunications

Result continuities

  • Project

    <a href="/en/project/FV40371" target="_blank" >FV40371: New system for indoor 2D and 3D real time positioning for automation, visualization and control of work process using MEMS sensors and PDoA/AoA hybrid method</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    43nd International Conference on Telecommunications and Signal Processing (TSP 2020).

  • ISBN

    978-1-7281-6376-5

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    1-6

  • Publisher name

    IEEE

  • Place of publication

    Neuveden

  • Event location

    Milan, Italy

  • Event date

    Jul 7, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000577106400126