All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Deep learning for magnetic resonance spectroscopy: a time-frequency analysis approach

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU137021" target="_blank" >RIV/00216305:26220/20:PU137021 - isvavai.cz</a>

  • Result on the web

    <a href="http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=3&SID=C37QBScKbtCLTGKNC4k&page=1&doc=1" target="_blank" >http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=3&SID=C37QBScKbtCLTGKNC4k&page=1&doc=1</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Deep learning for magnetic resonance spectroscopy: a time-frequency analysis approach

  • Original language description

    In this study, we verify the hypothesis that deep learning in combination with time-frequency analsis can be used for metabolite quantification and yeilds results more robust than deep learning trained with magnetic resonance signals in the frequency domain.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20601 - Medical engineering

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceeding 2 of 26th Conference student EEICT 2020

  • ISBN

    978-80-214-5868-0

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    131-135

  • Publisher name

    Brno university of technology

  • Place of publication

    Brno

  • Event location

    BRNO

  • Event date

    Apr 23, 2020

  • Type of event by nationality

    CST - Celostátní akce

  • UT code for WoS article

    000598376500032