All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Detection of intracranial haemorrhages in head CT data based on deep learning

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU137079" target="_blank" >RIV/00216305:26220/20:PU137079 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2020_sbornik_2.pdf" target="_blank" >https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2020_sbornik_2.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Detection of intracranial haemorrhages in head CT data based on deep learning

  • Original language description

    In this paper, we present a method for detection of intracranial haemorrhages in the head CT data using convolutional neural networks. We introduce three 2D image classifiers that perform in three perpendicular anatomical planes and classify the CT slices into healthy or pathological, whereby they provide the information about the position of the haemorrhage in the 3D CT im-age. The accuracies of the three models are 90.19%, 88.15%, and 80.90% for the axial, sagital and coronal plane.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20601 - Medical engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings II of the 26th Conference STUDENT EEICT 2020

  • ISBN

    978-80-214-5868-0

  • ISSN

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    72-75

  • Publisher name

    Brno University of Technolog, Faculty of Electrical Engineering anf Communication

  • Place of publication

    Brno

  • Event location

    BRNO

  • Event date

    Apr 23, 2020

  • Type of event by nationality

    CST - Celostátní akce

  • UT code for WoS article

    000598376500019