Feasibility of Location-Aware Handover for Autonomous Vehicles in Industrial Multi-Radio Environments
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU137689" target="_blank" >RIV/00216305:26220/20:PU137689 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/1424-8220/20/21/6290" target="_blank" >https://www.mdpi.com/1424-8220/20/21/6290</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s20216290" target="_blank" >10.3390/s20216290</a>
Alternative languages
Result language
angličtina
Original language name
Feasibility of Location-Aware Handover for Autonomous Vehicles in Industrial Multi-Radio Environments
Original language description
The integration of millimeter wave (mmWave) and low frequency interfaces brings an unique opportunity to unify the communications and positioning technologies in the future wireless heterogeneous networks (HetNets), which offer great potential for efficient handover using location awareness, hence a location-aware handover (LHO). Targeting a self-organized communication system with autonomous vehicles, we conduct and describe an experimental and analytical study on the LHO using a mmWave-enabled robotic platform in a multi-radio environment. Compared to the conventional received signal strength indicator (RSSI)-based handover, the studied LHO not only improves the achievable throughput, but also enhances the wireless link robustness for the industrial Internet-of-things (IIoT)-oriented applications. In terms of acquiring location awareness, a geometry-based positioning (GBP) algorithm is proposed and implemented in both simulation and experiments, where its achievable accuracy is assessed and tested. Based on the performed experiments, the location-related measurements acquired by the robot are not accurate enough for the standalone-GBP algorithm to provide an accurate location awareness to perform a reliable handover. Nevertheless, we demonstrate that by combining the GBP with the dead reckoning, more accurate location awareness becomes achievable, the LHO can therefore be performed in a more optimized manner compared to the conventional RSSI-based handover scheme, and is therefore able to achieve approximately twice as high average throughput in certain scenarios. Our study confirms that the achieved location awareness, if accurate enough, could enable an efficient handover scheme, further enhancing the autonomous features in the HetNets.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20203 - Telecommunications
Result continuities
Project
<a href="/en/project/EF16_027%2F0008371" target="_blank" >EF16_027/0008371: International mobility of researchers at the Brno University of Technology</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SENSORS
ISSN
1424-8220
e-ISSN
1424-3210
Volume of the periodical
20
Issue of the periodical within the volume
21
Country of publishing house
CH - SWITZERLAND
Number of pages
22
Pages from-to
1-22
UT code for WoS article
000589330800001
EID of the result in the Scopus database
—