All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Tool for Automatic Estimation of Patient Position in Spinal CT Data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU137804" target="_blank" >RIV/00216305:26220/20:PU137804 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-64610-3_7" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-64610-3_7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-64610-3_7" target="_blank" >10.1007/978-3-030-64610-3_7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Tool for Automatic Estimation of Patient Position in Spinal CT Data

  • Original language description

    Most of the recently available research and challenge data lack the meta-data containing any information about the patient position. This paper presents a tool for automatic rotation of CT data into a standardized (Head First Supine) patient position. The proposed method is based on the prediction of rotation angle with convolutional neural network, and it achieved nearly perfect results with an accuracy of 99.55 %. We provide implementations with easy to use example for both, Matlab and Python (PyTorch), which can be used, for example, for automatic rotation correction of VerSe2020 challenge data.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20601 - Medical engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    EMBEC 2020, IFMBE Proceedings 80

  • ISBN

    978-3-030-64610-3

  • ISSN

    1680-0737

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    51-56

  • Publisher name

    Springer Nature Switzerland AG 2021

  • Place of publication

    Switzerland

  • Event location

    Portorož

  • Event date

    Nov 29, 2020

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article