Post-Quantum Era Privacy Protection for Intelligent Infrastructures
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU140163" target="_blank" >RIV/00216305:26220/21:PU140163 - isvavai.cz</a>
Result on the web
<a href="https://ieeexplore.ieee.org/abstract/document/9363165" target="_blank" >https://ieeexplore.ieee.org/abstract/document/9363165</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2021.3062201" target="_blank" >10.1109/ACCESS.2021.3062201</a>
Alternative languages
Result language
angličtina
Original language name
Post-Quantum Era Privacy Protection for Intelligent Infrastructures
Original language description
As we move into a new decade, the global world of Intelligent Infrastructure (II) services integrated into the Internet of Things (IoT) are at the forefront of technological advancements. With billions of connected devices spanning continents through interconnected networks, security and privacy protection techniques for the emerging II services become a paramount concern. In this paper, an up-to-date privacy method mapping and relevant use cases are surveyed for II services. Particularly, we emphasize on post-quantum cryptography techniques that may (or must when quantum computers become a reality) be used in the future through concrete products, pilots, and projects. The topics presented in this paper are of utmost importance as (1) several recent regulations such as Europe's General Data Protection Regulation (GDPR) have given privacy a significant place in digital society, and (2) the increase of IoT/II applications and digital services with growing data collection capabilities are introducing new threats and risks on citizens' privacy. This in-depth survey begins with an overview of security and privacy threats in IoT/IIs. Next, we summarize some selected Privacy-Enhancing Technologies (PETs) suitable for privacy-concerned II services, and then map recent PET schemes based on post-quantum cryptographic primitives which are capable of withstanding quantum computing attacks. This paper also overviews how PETs can be deployed in practical use cases in the scope of IoT/IIs, and maps some current projects, pilots, and products that deal with PETs. A practical case study on the Internet of Vehicles (IoV) is presented to demonstrate how PETs can be applied in reality. Finally, we discuss the main challenges with respect to current PETs and highlight some future directions for developing their post-quantum counterparts.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/VJ01030002" target="_blank" >VJ01030002: International Partnership for Cryptography and Cybersecurity Research</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE Access
ISSN
2169-3536
e-ISSN
—
Volume of the periodical
9
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
40
Pages from-to
„36038 “-„36077“
UT code for WoS article
000626497100001
EID of the result in the Scopus database
2-s2.0-85101745440