All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

SEMI-SUPERVISED APPROACH TO TRAIN CAPTCHA LETTER POSITION DETETOR

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU140619" target="_blank" >RIV/00216305:26220/21:PU140619 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    SEMI-SUPERVISED APPROACH TO TRAIN CAPTCHA LETTER POSITION DETETOR

  • Original language description

    Common Optical Character Recognition (OCR) methods benefit from the fact, that the text is distributed in images in a predictable pattern. This is not the situation with CAPTCHA systems. Utilizing OCR algorithms to overcome common web anti-abuse CAPTCHA systems is therefore a challenging task. To train a system to overcome any CAPTCHA scheme, an attacker needs a huge dataset of annotated images. And for some methods, the attacker needs not only the right answers but also an exact position of the character in the CAPTCHA image. Annotate the positions of the object in an image is a time-consuming task. In this paper, we propose a system, which can help to annotate the position of CAPTCHA character with minimal human interaction. After annotating a small sample of targeted CAPTCHA images, a YOLO-based region detection deep network is used to search for the characters’ locations.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20202 - Communication engineering and systems

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 27nd Conference STUDENT EEICT 2018

  • ISBN

    978-80-214-5942-7

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    436-440

  • Publisher name

    Vysoké učené Technické, Fakulta elektrotechniky a komunikačních technologií

  • Place of publication

    Brno

  • Event location

    Brno

  • Event date

    Apr 27, 2021

  • Type of event by nationality

    CST - Celostátní akce

  • UT code for WoS article