Multi-modal, Object Detection, Convolutional Neural Network, RGB, Grayscale, Thermal, IR, Depth Map
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU140805" target="_blank" >RIV/00216305:26220/21:PU140805 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Multi-modal, Object Detection, Convolutional Neural Network, RGB, Grayscale, Thermal, IR, Depth Map
Original language description
This paper studies the information gain of various data domains that are commonly used in the modern Advanced Driving Assistant Systems (ADAS) to develop robust systems that would increase traffic safety. We could see a fast growth of many Deep Convolutional Neural Networks (DCNN) based solutions during the last several years. These methods are state-of-the-art in object detection and semantic scene segmentation. We created a small annotated dataset of synchronized RGB, grayscale, thermal, and depth map images and used the modern DCNN framework tool to evaluate the object detection robustness of different data domains and their information gain process understanding the surrounding environment of the semi-autonomous driving agent.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20204 - Robotics and automatic control
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
PROCEEDINGS II OF THE 27TH STUDENT EEICT 2021
ISBN
978-80-214-5943-4
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
156-160
Publisher name
Neuveden
Place of publication
neuveden
Event location
Brno
Event date
Apr 27, 2021
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
—