Uniform exponential stability of linear delayed integro-differential vector equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU140922" target="_blank" >RIV/00216305:26220/21:PU140922 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0022039620304551" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022039620304551</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2020.08.011" target="_blank" >10.1016/j.jde.2020.08.011</a>
Alternative languages
Result language
angličtina
Original language name
Uniform exponential stability of linear delayed integro-differential vector equations
Original language description
Uniform exponential stability of a linear delayed integro-differential vector equation is considered. The main result is of an explicit type, depending on all delays, and its proof is based on an a priori estimation of solutions, a Bohl-Perron type result, and utilization of the matrix measure.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
J.Differetial Equations
ISSN
0022-0396
e-ISSN
1090-2732
Volume of the periodical
270
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
23
Pages from-to
573-595
UT code for WoS article
000584321500016
EID of the result in the Scopus database
2-s2.0-85090874049