All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Trains Detection Using State of Polarization Changes Measurement and Convolutional Neural Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU140943" target="_blank" >RIV/00216305:26220/21:PU140943 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/9430469" target="_blank" >https://ieeexplore.ieee.org/document/9430469</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/INERTIAL51137.2021.9430469" target="_blank" >10.1109/INERTIAL51137.2021.9430469</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Trains Detection Using State of Polarization Changes Measurement and Convolutional Neural Networks

  • Original language description

    Fiber optic infrastructure security is of growing interest. The current distributed sensor systems are robust and expensive solutions, and their practical applications are uncommon. Research into simple and cost-effective solutions based on changes in the state of polarization is crucial. This paper expands the use of a vibration sensor based on the sensing of rapid changes in the state of polarization (SOP) of light in a standard single-mode optical fiber by using a convolutional neural network to detect trains running along the optical fiber infrastructure. It is a simple system that determines ongoing events near the optical fiber route by simply determining the signal boundaries that define the idle state. By using a neural network, it is possible to eliminate the distortion caused by the temperature changes and, for example, to improve detection in the the zones where the vibrations are not strong enough for a simple threshold resolution.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20203 - Telecommunications

Result continuities

  • Project

    <a href="/en/project/VI20192022146" target="_blank" >VI20192022146: Distributed fiber optic sensing system for use in perimeter and line structures protection</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2021 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL) Proceedings

  • ISBN

    978-1-7281-5099-4

  • ISSN

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    1-4

  • Publisher name

    IEEE

  • Place of publication

    neuveden

  • Event location

    Hawai (virtual)

  • Event date

    Mar 22, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000680838400015