Multi-Class Weather Classification from Single Images with Convolutional Neural Networks on Embedded Hardware
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU141054" target="_blank" >RIV/00216305:26220/21:PU141054 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Multi-Class Weather Classification from Single Images with Convolutional Neural Networks on Embedded Hardware
Original language description
The paper is focused on creating a lightweight machine learning solution for classification of weather conditions from input images, that can process the input data in real time on embedded devices. The approach to the classification uses deep convolutional neural networks architecture with focus on lightweight design and fast inference, while providing high accuracy results. The focus on creating lightweight convolutional neural network architecture capable of classification of weather conditions also enables usage of the network in real time applications at the edge.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
20202 - Communication engineering and systems
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů