All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

POWER ASYMPTOTICS OF SOLUTIONS TO THE DISCRETE EMDEN-FOWLER TYPE EQUATION

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU141990" target="_blank" >RIV/00216305:26220/21:PU141990 - isvavai.cz</a>

  • Result on the web

    <a href="https://mitav.unob.cz" target="_blank" >https://mitav.unob.cz</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    POWER ASYMPTOTICS OF SOLUTIONS TO THE DISCRETE EMDEN-FOWLER TYPE EQUATION

  • Original language description

    In the paper, the discrete Emden-Fowler equation $$Delta62 u(k) pm k^alpha u^m (k) = 0$$ is considered, where $k ge k_0$, $k$ is an independent variable, $k_0$ is a fixed integer,$u: {k_0,k_0 + 1,...} to mathbb{R}$, $Delta u(k)$ is the first difference of $u(k)$, $Delta^2u(k)$ is the second difference of $u(k)$, $m$ and $alpha$ are real numbers. A result on asymptotic behaviour of solutions when $k to infty$ is proved and admissible values $m$ and $alpha$ satisfying assumptions of this result are considered in an $(m,alpha)$-plane.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    MITAV 2021

  • ISBN

    978-80-7582-380-9

  • ISSN

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    1-11

  • Publisher name

    Universita obrany

  • Place of publication

    Brno

  • Event location

    Brno

  • Event date

    Jun 17, 2021

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article