Detecting Faces With Face Masks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU142676" target="_blank" >RIV/00216305:26220/21:PU142676 - isvavai.cz</a>
Result on the web
<a href="https://ieeexplore.ieee.org/document/9522677" target="_blank" >https://ieeexplore.ieee.org/document/9522677</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSP52935.2021.9522677" target="_blank" >10.1109/TSP52935.2021.9522677</a>
Alternative languages
Result language
angličtina
Original language name
Detecting Faces With Face Masks
Original language description
This paper deals with the evaluation of several methods for face detection when the face is covered by a mask. The methods evaluated are Haar cascade and Histogram of Oriented Gradients as feature-based approaches, Multitask Cascade Convolutional Neural Network, Max Margin Object Detection and TinyFace as convolutional neural network based approaches. Various types of face masks are considered: disposal face mask, burka, balaclava, ski helmet with ski goggles, hockey helmet with protective grill, costumes, and others. The TinyFace method achieves the best accuracy result, but also requires much more computational power than other approaches. Therefore, this paper describes an experiment to see if the accuracy of some of the remaining methods can be improved by retraining their models with new image data containing faces with various face masks.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20203 - Telecommunications
Result continuities
Project
<a href="/en/project/VI04000069" target="_blank" >VI04000069: Automated detection of protective equipment and disease-indicating conditions</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2021 44th International Conference on Telecommunications and Signal Processing (TSP)
ISBN
978-1-6654-2933-7
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
259-262
Publisher name
Neuveden
Place of publication
neuveden
Event location
Brno
Event date
Jul 26, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000701604600056