Dynamic Model of Medium Voltage Vacuum Circuit Breaker and Induction Motor for Switching Transients Simulation Using Clark Transformation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU147754" target="_blank" >RIV/00216305:26220/23:PU147754 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/1996-1073/16/3/1020" target="_blank" >https://www.mdpi.com/1996-1073/16/3/1020</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/en16031020" target="_blank" >10.3390/en16031020</a>
Alternative languages
Result language
angličtina
Original language name
Dynamic Model of Medium Voltage Vacuum Circuit Breaker and Induction Motor for Switching Transients Simulation Using Clark Transformation
Original language description
A derivation of the dynamic model of a medium voltage vacuum circuit breaker and induction motor in space vectors in coordinates αβ0 allow us to model switching transients in various dynamic states of the motor. In the case of the Clark transformation, the corresponding numerical integration technique can be selected including variable time-step integration techniques to avoid numerical instabilities due to the stiffness of the system. Assymetrical operations such as switching cause the power system to become unbalanced and the transformed equations α, β, and 0 are not uncoupled. Therefore, it is necessary to derive a coupling matrix between circuit breaker voltages and currents in the coordinate system αβ0. The subject of our interest is switching overvoltages that arise when turning off small inductive currents by a vacuum circuit breaker. When deriving the model of a vacuum circuit breaker, all its properties encountered during this action are taken into account, i.e., current chop, virtual current chop, dielectric barrier in the circuit breaker and its recovery rate, and the ability of the vacuum circuit breaker to extinguish high frequency currents. Simulation results are compared with the measured results on a medium voltage motor as well as with the simulation results of the mathematical model of the test circuit according to IEC 62271-110 resolved using the nodal method (EMTP algorithm). Models are implemented in the MATLAB/Simulink programming environment.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20201 - Electrical and electronic engineering
Result continuities
Project
<a href="/en/project/ED0014%2F01%2F01" target="_blank" >ED0014/01/01: Research and Technology Centre of Renewable Energy Sources</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ENERGIES
ISSN
1996-1073
e-ISSN
—
Volume of the periodical
16
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
22
Pages from-to
1-22
UT code for WoS article
000935700700001
EID of the result in the Scopus database
2-s2.0-85147963062