Quality comparison of 360° 8K images compressed by conventional and deep learning algorithms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148052" target="_blank" >RIV/00216305:26220/23:PU148052 - isvavai.cz</a>
Result on the web
<a href="https://ieeexplore.ieee.org/document/10109066" target="_blank" >https://ieeexplore.ieee.org/document/10109066</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/RADIOELEKTRONIKA57919.2023.10109066" target="_blank" >10.1109/RADIOELEKTRONIKA57919.2023.10109066</a>
Alternative languages
Result language
angličtina
Original language name
Quality comparison of 360° 8K images compressed by conventional and deep learning algorithms
Original language description
Due to the accessibility of virtual reality in recent years, there has been a great interest in producing and streaming omnidirectional (360° field of view) high resolution images and videos. Since both high resolution and high quality are demanding for the storage and distribution of such content, the use of advanced compression methods is a key factor in achieving this goal. This paper provides an objective comparison of conventional image compression codecs (JPEG, JPEG XL, HEIC, AVIF, VVC Intra) and deep learning image compression algorithms with a JPEG AI framework recommendation. The visual quality evaluation is based on ten images from publicly available databases compressed to predetermined bit rates. Six full reference objective metrics (WS-PSNR, MS-SSIM, VIFp, FSIMc, GMSD, VMAF) are used to evaluate the visual quality of the compressed images. Modern image compression codecs outperform the oldest and most widely used codec JPEG in terms of bandwidth reduction but require more processing power and system resources.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20201 - Electrical and electronic engineering
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
33rd International Conference Radioelektronika
ISBN
979-8-3503-9834-2
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
„“-„“
Publisher name
Neuveden
Place of publication
Pardubice
Event location
Pardubice
Event date
Apr 19, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000990505700039