All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Chest X-ray Image Analysis using Convolutional Vision Transformer

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148419" target="_blank" >RIV/00216305:26220/23:PU148419 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf" target="_blank" >https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.13164/eeict.2023.161" target="_blank" >10.13164/eeict.2023.161</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Chest X-ray Image Analysis using Convolutional Vision Transformer

  • Original language description

    In recent years, computer techniques for clinical image analysis have been improved significantly, especially because of the pandemic situation. Most recent approaches are focused on the detection of viral pneumonia or COVID-19 diseases. However, there is less attention to common pulmonary diseases, such as fibrosis, infiltration and others. This paper introduces the neural network, which is aimed to detect 14 pulmonary diseases. This model is composed of two branches: global, which is the InceptionNetV3, and local, which consists of Inception modules and a modified Vision Transformer. Additionally, the Asymmetric Loss function was utilized to deal with the problem of multilabel classification. The proposed model has achieved an AUC of 0.8012 and an accuracy of 0.7429, which outperforms the well-known classification models.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20203 - Telecommunications

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings II of the 29th Conference STUDENT EEICT 2023 Selected papers

  • ISBN

    978-80-214-6154-3

  • ISSN

    2788-1334

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    161-165

  • Publisher name

    Brno University of Technology, Faculty of Electrical Engineering and Communication

  • Place of publication

    Brno

  • Event location

    Brno

  • Event date

    Apr 25, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article