All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Comparative analysis of retinal photoplethysmographic spatial maps and thickness of retinal nerve fiber layer

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148649" target="_blank" >RIV/00216305:26220/23:PU148649 - isvavai.cz</a>

  • Result on the web

    <a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0284743" target="_blank" >https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0284743</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1371/journal.pone.0284743" target="_blank" >10.1371/journal.pone.0284743</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Comparative analysis of retinal photoplethysmographic spatial maps and thickness of retinal nerve fiber layer

  • Original language description

    The paper presents a comparative study of the pulsatile attenuation amplitude (PAA) within the optic nerve head (ONH) at four different areas calculated from retinal video sequences and its relevance to the retinal nerve fiber layer thickness (RNFL) changes in normal subjects and patients with different stages of glaucoma. The proposed methodology utilizes processing of retinal video sequences acquired by a novel video ophthalmoscope. The PAA parameter measures the amplitude of heartbeat-modulated light attenuation in retinal tissue. Correlation analysis between PAA and RNFL is performed in vessel-free locations of the peripapillary region with the proposed evaluating patterns: 360 & DEG; circular area, temporal semi-circle, nasal semi-circle. For comparison, the full ONH area is also included. Various positions and sizes of evaluating patterns in peripapillary region were tested which resulted in different outputs of correlation analysis. The results show significant correlation between PAA and RNFL thickness calculated in proposed areas. The highest correlation coefficient R-temp = 0.557 (p<0.001) reflects the highest PAA-RNFL correspondence in the temporal semi-circular area, compared to the lowest value in the nasal semi-circular area (R-nasal = 0.332, p<0.001). Furthermore, the results indicate the most relevant approach to calculate PAA from the acquired video sequences is using a thin annulus near the ONH center. Finally, the paper shows the proposed photoplethysmographic principle based on innovative video ophthalmoscope can be used to analyze changes in retinal perfusion in peripapillary area and can be potentially used to assess progression of the RNFL deterioration.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20601 - Medical engineering

Result continuities

  • Project

    <a href="/en/project/GA21-18578S" target="_blank" >GA21-18578S: Dual-wavelength functional retinal imaging and simultaneous biosignals acquisition for ocular blood circulation assessment</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    PLOS ONE

  • ISSN

    1932-6203

  • e-ISSN

  • Volume of the periodical

    18

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    1-15

  • UT code for WoS article

    001022293200001

  • EID of the result in the Scopus database

    2-s2.0-85159551439