All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Arbitrarily Tunable Phase Shift in Low-Frequency Multiphase Oscillator

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148715" target="_blank" >RIV/00216305:26220/23:PU148715 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/10138531" target="_blank" >https://ieeexplore.ieee.org/document/10138531</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TIM.2023.3280514" target="_blank" >10.1109/TIM.2023.3280514</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Arbitrarily Tunable Phase Shift in Low-Frequency Multiphase Oscillator

  • Original language description

    A special electronically tunable multiphase oscillator with arbitrarily and continuously adjustable phase shifts is introduced. Our design assumes to set the phase around the asymptotical limit of 180.. These features cannot be easily achieved in a standard way, i.e., any simple single-phase oscillator supplemented by a first-order adjustable all-pass (AP) section (shifter). The proposed design uses an electronically linearly tunable quadrature oscillator with a frequency range from 0.98 up to 12.54 kHz. It also offers multiples of 45. as the initial setting of the phase shift tuning region. The example of operation shows the adjustment of the phase shift at a specific frequency (10 kHz) within the range of +/- 45 degrees. and around -180 degrees, -135 degrees, and -90 degrees. This variability is not available in standard cases without the use of several AP sections. The current value of the phase shift of the presented oscillator is electronically controlled and does not influence the oscillation frequency and condition of oscillation. Output levels of produced signals are not influenced by this tuning process and are in the range of several hundreds of mV. Two applications of the oscillator are proposed. The first one focuses on low-bitrate modulation systems [phase shift keying (PSK)] while in the second one, our circuit represents a source of phase-adjustable signals in acoustic experiments. Discrete passive elements and active devices (special multipliers having current output terminals, unity-gain differential voltage buffers) fabricated in 0.35 mu m I3T25 ON Semiconductor 3.3 V CMOS process are used in experimental verification.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20200 - Electrical engineering, Electronic engineering, Information engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

  • ISSN

    0018-9456

  • e-ISSN

    1557-9662

  • Volume of the periodical

    72

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

    1-11

  • UT code for WoS article

    001012832900023

  • EID of the result in the Scopus database

    2-s2.0-85161038969