All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Implementation of a deep learning model for vertebral segmentation in CT data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148717" target="_blank" >RIV/00216305:26220/23:PU148717 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf" target="_blank" >https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.13164/eeict.2023.41" target="_blank" >10.13164/eeict.2023.41</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Implementation of a deep learning model for vertebral segmentation in CT data

  • Original language description

    This paper deals with the problem of vertebral segmentation in CT data with the use of deep learning approaches. Automatic segmentation of vertebrae is a very complex issue and would simplify the work of radiologists and doctors. The paper is focused on one of the models published and submitted to the Large Scale Vertebrae Segmentation Challenge (VerSe) in 2020 from C. Payer et al. – Improving Coarse to Fine Vertebrae Localisation and Segmentation with SpatialConfiguration-Net and U-Net and its implementation and modification. The model is evaluated on the corresponding public and hidden dataset. Its modification shows an improvement of the results in comparison with the published results, a mean Dice score improved from 0.9165 to 0.9302 on the public dataset and from 0.8971 to 0.9264 on the hidden dataset.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20601 - Medical engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings II of the 29th Conference STUDENT EEICT 2023 Selected papers

  • ISBN

    978-80-214-6154-3

  • ISSN

    2788-1334

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    41-44

  • Publisher name

    Brno University of Technology, Faculty of Electrical Engineering and Communication

  • Place of publication

    Brno, Czech Republic

  • Event location

    Brno

  • Event date

    Apr 25, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article