Blood pressure estimation using smartphone
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148760" target="_blank" >RIV/00216305:26220/23:PU148760 - isvavai.cz</a>
Result on the web
<a href="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf" target="_blank" >https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13164/eeict.2023.129" target="_blank" >10.13164/eeict.2023.129</a>
Alternative languages
Result language
angličtina
Original language name
Blood pressure estimation using smartphone
Original language description
This paper presents an experimental cuff-less measurement of systolic (SBP) and diastolic blood pressure (DBP) using smartphone. A photoplethysmographic signal (PPG) measured by a smartphone camera is used to estimate blood pressure (BP). This paper contains comparison of several machine learning (ML) methods for BP estimation. Filtering the PPG signal with a band-pass filter (0.5-12 Hz) followed by feature extraction and using Random Forest (RF) methods separately or as a weak regressor in adaptive boosting (AdaBoost) or bootstrap aggregating (Boosting) reached the best results according to Association for the Advancement of Medical Instrumentation (AAMI) and British Hypertension Society (BHS) standards among all regression ML models. The mean absolute error (MAE) and standard deviation (SD) of Bagging model were 4.532±3.760 mmHg for SBP and 2.738±3.032 mmHg for DBP (AAMI). This result meets the criteria of the AAMI standard.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20601 - Medical engineering
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings II of the 29 th Conference STUDENT EEICT 2023 Selected papers
ISBN
978-80-214-6154-3
ISSN
2788-1334
e-ISSN
—
Number of pages
4
Pages from-to
129-132
Publisher name
Brno University of Technology, Faculty of Electrical Engineering and Communication
Place of publication
Brno
Event location
Brno
Event date
Apr 25, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—