Asymptotic behavior of solutions of a second-order nonlinear discrete equation of Emden-Fowler type
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU149118" target="_blank" >RIV/00216305:26220/23:PU149118 - isvavai.cz</a>
Result on the web
<a href="https://www.degruyter.com/document/doi/10.1515/anona-2023-0105/html" target="_blank" >https://www.degruyter.com/document/doi/10.1515/anona-2023-0105/html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/anona-2023-0105" target="_blank" >10.1515/anona-2023-0105</a>
Alternative languages
Result language
angličtina
Original language name
Asymptotic behavior of solutions of a second-order nonlinear discrete equation of Emden-Fowler type
Original language description
The article investigates a second-order nonlinear difference equation of Emden-Fowler type. New conditions with respect to parameters of equation are found such that the equation admits a solution asymptotically represented by a power function that is asymptotically equivalent to the exact solution of the nonlinear second-order differential Emden-Fowler equation. Two-term asymptotic representations are given not only for the solution itself but also for its first- and second-order forward diffrences as well. Previously known results are discussed, and illustrative examples are considered.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Nonlinear Analysis
ISSN
2191-9496
e-ISSN
2191-950X
Volume of the periodical
12
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
23
Pages from-to
1-23
UT code for WoS article
001079506500001
EID of the result in the Scopus database
2-s2.0-85174678791