Multiplicity of solutions for nonlinear coercive problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU149290" target="_blank" >RIV/00216305:26220/23:PU149290 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0022247X23004766" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022247X23004766</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2023.127473" target="_blank" >10.1016/j.jmaa.2023.127473</a>
Alternative languages
Result language
angličtina
Original language name
Multiplicity of solutions for nonlinear coercive problems
Original language description
We are concerned in this paper with problems that involve nonlinear potential mappings satisfying condition (S) and whose potentials are coercive. We first provide mild sufficient conditions for the minimizing sequence in the Weierstrass-Tonelli theorem in order to have strongly convergent subsequences. Next, we establish a three critical point theorem which is based on the Pucci-Serrin type mountain pass lemma and which is an infinite dimensional counterpart of the Courant theorem. Ricceri-type three critical point results then follow. Some applications to Dirichlet boundary value problems driven by the perturbed Laplacian are given in the final part of this paper.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Application
ISSN
0022-247X
e-ISSN
1096-0813
Volume of the periodical
528
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
1-13
UT code for WoS article
001024041600001
EID of the result in the Scopus database
2-s2.0-85162900088