Attention-based VGG-Residual-Inception Module for EEG-Based Depression Detection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU149572" target="_blank" >RIV/00216305:26220/23:PU149572 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Attention-based VGG-Residual-Inception Module for EEG-Based Depression Detection
Original language description
Depression is a prevalent factor contributing to the increasing instances of suicide globally. Consequently, there is a pressing need for effective diagnosis and therapeutic interventions to alleviate depression symptoms. One potential tool for assessing depression levels is the electroencephalogram (EEG), a device that records and measures the brain’s electrical activity. Previous studies have demonstrated the potential of using EEG data and deep learning models to diagnose mental disorders, paving the way for better comprehension and treatment of depression. As a result, this study offers a novel attention-based visual geometry group-residual-inception module (A-VGGRI) for classifying EEG data from healthy and major depression disorder people. The Patient Health Questionnaire-9 score is utilized to measure the depression level in this case. A-VGGRI’s performance is examined using a depression dataset; the findings obtained by A-VGGRI have an accuracy of 96.35% and an area under the receiver operating characteristic curve of 0.96, demonstrating its usability in medical and industrial applications.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20601 - Medical engineering
Result continuities
Project
<a href="/en/project/VJ02010019" target="_blank" >VJ02010019: Tools for Handwriting fORensics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
15th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)
ISBN
979-8-3503-9328-6
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
33-37
Publisher name
Neuveden
Place of publication
Ghent
Event location
Gent, Belgium
Event date
Oct 30, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—