All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Ground states of weighted 4D biharmonic equations with exponential growth

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU150389" target="_blank" >RIV/00216305:26220/24:PU150389 - isvavai.cz</a>

  • Result on the web

    <a href="https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001135266200001" target="_blank" >https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001135266200001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/mma.9851" target="_blank" >10.1002/mma.9851</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Ground states of weighted 4D biharmonic equations with exponential growth

  • Original language description

    In this paper, we are concerned with the existence of a ground state solution for a logarithmic weighted biharmonic equation under Dirichlet boundary conditions in the unit ball B$$ B $$ of Double-struck capital R4$$ {mathrm{mathbb{R}}} circumflex 4 $$. The reaction term of the equation is assumed to have exponential growth, in view of Adams' type inequalities. It is proved that there is a ground state solution using min-max techniques and the Nehari method. The associated energy functional loses compactness at a certain level. An appropriate asymptotic condition allows us to bypass the non-compactness levels of the functional.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematical Methods in the Applied Sciences

  • ISSN

    0170-4214

  • e-ISSN

    1099-1476

  • Volume of the periodical

    47

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    24

  • Pages from-to

    5007-5030

  • UT code for WoS article

    001135266200001

  • EID of the result in the Scopus database

    2-s2.0-85180701893