Deep Learning for Agar Plate Analysis: Predicting Microbial Cluster Counts
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151228" target="_blank" >RIV/00216305:26220/24:PU151228 - isvavai.cz</a>
Result on the web
<a href="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_1.pdf" target="_blank" >https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_1.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Deep Learning for Agar Plate Analysis: Predicting Microbial Cluster Counts
Original language description
Manual analysis of agar plates remains a bottleneck in microbiology, hindering automation efforts. This study investigates the feasibility of using machine learning for automated microbial cluster count detection from agar plate images. We employed various methods, including elbow detection (baseline) and supervised learning models (Support Vector Regression, Simple CNN, XGBoost, Random Forest, pre-trained VGG, and pre-trained Inceptionv3). The results demonstrate that machine learning models significantly outperform the baseline, achieving lower prediction errors and higher accuracy in identifying the correct number of clusters. Notably, both pre-trained VGG and InceptionV3 achieved strong performance, highlighting the effectiveness of transfer learning for this task. InceptionV3 exhibited the lowest error rates overall. This study establishes a foundation for developing robust automated systems for quantifying microbial growth, potentially streamlining workflows and improving efficiency in microbiol
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
30400 - Medical biotechnology
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů