Graph Neural Networks in Epilepsy Surgery
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151625" target="_blank" >RIV/00216305:26220/24:PU151625 - isvavai.cz</a>
Result on the web
<a href="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_2.pdf" target="_blank" >https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_2.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13164/eeict.2024.57" target="_blank" >10.13164/eeict.2024.57</a>
Alternative languages
Result language
angličtina
Original language name
Graph Neural Networks in Epilepsy Surgery
Original language description
Epilepsy surgery presents a viable treatment option for patients with drug-resistant epilepsy, necessitating precise localization of the epileptogenic zone (EZ) for optimal outcomes. As the limitations of currently used localization methods lead to a seizure-free postsurgical outcome only in about 60% of cases, this study introduces a novel approach to EZ localization by leveraging Graph Neural Networks (GNNs) for the analysis of interictal stereoelectroencephalography (SEEG) data. A GraphSAGE-based model for identifying resected seizure-onset zone (SOZ) electrode contacts was applied to a clinical dataset comprising 17 patients from two institutions. This study uniquely focuses on the use of interictal SEEG recordings, aiming to streamline the presurgical monitoring process and minimize risks and costs associated with prolonged SEEG monitoring. Through this innovative approach, the GNN model demonstrated promising results, achieving an Area Under the Receiver Operating Characteristic (AUROC) score of 0.830 and an Area Under the Precision-Recall Curve (AUPRC) of 0.432. These outcomes along with the potential of GNNs in leveraging the patient-specific electrode placement highlight their potential in enhancing the accuracy of EZ localization in drug-resistant epilepsy patients.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20601 - Medical engineering
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings II of the 30th Conference STUDENT EEICT 2024: Selected papers
ISBN
978-80-214-6230-4
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
57-60
Publisher name
Brno University of Technology, Faculty of Electrical Engineering and Communication
Place of publication
Brno
Event location
Brno
Event date
Apr 23, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—