All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Varroa destructor detection on honey bees using hyperspectral imagery

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151729" target="_blank" >RIV/00216305:26220/24:PU151729 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0168169924006100?pes=vor" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0168169924006100?pes=vor</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.compag.2024.109219" target="_blank" >10.1016/j.compag.2024.109219</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Varroa destructor detection on honey bees using hyperspectral imagery

  • Original language description

    Hyperspectral (HS) imagery in agriculture is becoming increasingly common. These images have the advantage of higher spectral resolution. Advanced spectral processing techniques are required to unlock the information potential in these HS images. The present paper introduces a method rooted in multivariate statistics designed to detect parasitic Varroa destructor mites on the body of western honey bee Apis mellifera, enabling easier and continuous monitoring of the bee hives. The present paper is the first to utilize hyperspectral imagery for the task, previous studies existing only for multispectral imagery. The methodology explores unsupervised (K-means++) and recently developed supervised (Kernel Flows-Partial Least-Squares, KF-PLS) methods for parasitic identification. Additionally, in light of the emergence of custom-band multispectral cameras, the present research outlines a strategy for identifying the specific wavelengths necessary for effective bee-mite separation, suitable for implementation in a custom-band camera. Illustrated with a real-case dataset, our findings demonstrate that as few as four spectral bands are sufficient for accurate parasite identification.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    COMPUTERS AND ELECTRONICS IN AGRICULTURE

  • ISSN

    0168-1699

  • e-ISSN

    1872-7107

  • Volume of the periodical

    224

  • Issue of the periodical within the volume

    září 2024

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    11

  • Pages from-to

    „“-„“

  • UT code for WoS article

    001271974900001

  • EID of the result in the Scopus database

    2-s2.0-85198275920