All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

FollowThePathNet: UAVs Use Neural Networks to Follow Paths in GPS-Denied Environments

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151734" target="_blank" >RIV/00216305:26220/24:PU151734 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/10557044/keywords#keywords" target="_blank" >https://ieeexplore.ieee.org/document/10557044/keywords#keywords</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICUAS60882.2024.10557044" target="_blank" >10.1109/ICUAS60882.2024.10557044</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    FollowThePathNet: UAVs Use Neural Networks to Follow Paths in GPS-Denied Environments

  • Original language description

    Navigating complex pathways autonomously poses a significant challenge for Unmanned Aerial Vehicles (UAVs). To address this issue, we developed a robust convolutional neural network (CNN) enabling UAVs to follow specific paths, such as trail, rural, and cycling ones, using real-time camera data. Our CNN model interprets the visual data to estimate the UAV's position relatively to the path, enabling path following without human intervention. This article details the methodology employed in training our neural network, including the data collection, architecture of the model, and parameters. Additionally, we describe integrating the hardware and software components used in the implementation. We conducted real-world tests to evaluate the effectivity of our approach. These tests confirmed the UAVs' capability to follow the designated paths, demonstrating the practical applicability and reliability of the system. The results and their implications are discussed thoroughly.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20204 - Robotics and automatic control

Result continuities

  • Project

    <a href="/en/project/VJ02010036" target="_blank" >VJ02010036: An Artificial Intelligence-Controlled Robotic System for Intelligence and Reconnaissance Operations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2024 International Conference on Unmanned Aircraft Systems

  • ISBN

    979-8-3503-5788-2

  • ISSN

    2575-7296

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    92-98

  • Publisher name

    IEEE

  • Place of publication

    New York

  • Event location

    Chania

  • Event date

    Jun 4, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001259354800141