All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

CNN Architecture for Posture Classification on Small Data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151758" target="_blank" >RIV/00216305:26220/24:PU151758 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.ifacol.2024.07.413" target="_blank" >https://doi.org/10.1016/j.ifacol.2024.07.413</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ifacol.2024.07.413" target="_blank" >10.1016/j.ifacol.2024.07.413</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    CNN Architecture for Posture Classification on Small Data

  • Original language description

    A convolutional neural network is often mentioned as one of the deep learning methods that requires a large amount of training data. Questioning this belief, this paper explores the applicability of classification based on a shallow net structure trained on a small data set in the~context of patient posture classification based on data from a pressure mattress. Designing a CNN often presents a complex problem, especially without a universally applicable approach, allowing many diverse structural possibilities and training settings. We tested various training options and layer configurations to provide an overview of influential parameters for posture classification. Experiments show encouraging results with the leave-one-out cross-validation accuracy of 93.1% of one of the evaluated CNN structures and its hyperparameter settings.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    18th IFAC Conference on Programmable Devices and Embedded Systems – PDeS 2024.

  • ISBN

  • ISSN

    2405-8963

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    299-304

  • Publisher name

    Elsevier

  • Place of publication

    Brno, Czechia

  • Event location

    Brno

  • Event date

    Jun 19, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article