All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Deployment of deep learning-based anomaly detection systems: challenges and solutions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU152035" target="_blank" >RIV/00216305:26220/24:PU152035 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_2.pdf" target="_blank" >https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_2.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.13164/eeict.2024.207" target="_blank" >10.13164/eeict.2024.207</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Deployment of deep learning-based anomaly detection systems: challenges and solutions

  • Original language description

    Visual anomaly detection systems play an important role in various domains, including surveillance, industrial quality control, and medical imaging. However, the deployment of such systems presents significant challenges due to a wide range of possible scene setups with varying number of devices and high computational requirements of deep learning algorithms. This research paper investigates the challenges encountered during the deployment of visual anomaly detection systems for industrial applications and proposes solutions to address them effectively. We present a model use case scenario from real-world manufacturing quality control and propose an efficient distributed system for deployment of the defect detection methods in manufacturing facilities. The proposed solution aims to provide a general framework for deploying visual defect detection algorithms base on deep neural networks and their high computational requirements. Additionally, the paper addresses challenges related the whole process of automated quality control, which can be performed with varying number of camera devices and it mostly requires interaction with other factory services or workers themselves. We believe the presented framework can contribute to more widespread use of deep learning-based defect detection systems, which may provide valuable feedback for further research and development.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20204 - Robotics and automatic control

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings II of the 30th Student EEICT 2024: Selected Papers

  • ISBN

    978-80-214-6230-4

  • ISSN

    2788-1334

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    207-211

  • Publisher name

    Brno University of Technology, Faculty of Electronic Engineering and Communication

  • Place of publication

    Brno

  • Event location

    Brno

  • Event date

    Apr 23, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article