All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Upregulation of the PI3K/AKT and Nrf2 Pathways by the DPP‑4 Inhibitor Sitagliptin Renders Neuroprotection in Chemically Induced Parkinson’s Disease Mouse Models

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F25%3APU156326" target="_blank" >RIV/00216305:26220/25:PU156326 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubmed.ncbi.nlm.nih.gov/40127285/" target="_blank" >https://pubmed.ncbi.nlm.nih.gov/40127285/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acschemneuro.5c00112" target="_blank" >10.1021/acschemneuro.5c00112</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Upregulation of the PI3K/AKT and Nrf2 Pathways by the DPP‑4 Inhibitor Sitagliptin Renders Neuroprotection in Chemically Induced Parkinson’s Disease Mouse Models

  • Original language description

    Parkinson’s disease (PD) is one of the most common progressive neurodegenerative pathologies that leads to dopaminergic deficiency and motor manifestations. Alpha-synuclein aggregation is a characteristic hallmark of PD pathogenesis. These aggregates facilitate the formation of Lewy bodies and degeneration. The epidemiological evidence demonstrates a definitive association of diabetes with PD risk. Considering this, many antidiabetic agents such as GLP-1 agonists and DPP-4 inhibitors are being explored as alternative PD therapeutics. This study evaluated the neuroprotective effect of the DPP-4 inhibitor sitagliptin mediated by the PI3K/AKT and Nrf2 pathways in PD models. In silico studies were conducted to determine the binding affinity, stability, and ADMET properties of DPP-4 inhibitors with target proteins. Sitagliptin (15 mg/kg p.o.) was administered in rotenone (30 mg/kg p.o. for 28 days)-induced and MPTP/P (25 mg/kg i.p. MPTP and 100 mg/kg probenecid i.p. twice a week for 5 weeks)-induced PD mouse (C57/BL6) models. Neurobehavioral assessments were carried out throughout the study. Biochemical (GSH, MDA), molecular estimations (AKT, Nrf2, PI3K, GSK-3β, GLP1, CREB, BDNF, NF-κB, alpha-synuclein), histopathological studies, and immunohistochemistry were carried out at the end of the study. The in-silico studies demonstrate better binding, stability, and ADMET profile of sitagliptin with both target proteins. Sitagliptin restored cognitive and motor deficits in both rotenone- and MPTP/P-induced mouse models. There was upregulation of PI3K, AKT, Nrf2, CREB, and BDNF levels and downregulation of GSK-3β, NF-κB, and alpha-synuclein levels in both models after treatment with sitagliptin. However, GLP1 levels were not significantly restored, indicating a GLP1-independent mechanism. It also restored histopathological alterations and TH+ neuronal loss induced by rotenone and MPTP/P. These findings demonstrate that sitagliptin exhibits neuroprotective action mediated by upr

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30401 - Health-related biotechnology

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2025

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACS CHEM NEUROSCI

  • ISSN

    1948-7193

  • e-ISSN

  • Volume of the periodical

    2025

  • Issue of the periodical within the volume

    16

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    1402-1417

  • UT code for WoS article

    001450944300001

  • EID of the result in the Scopus database